Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 31 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 11 tok/s Pro
GPT-5 High 9 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

On Calibrated Predictions for Auction Selection Mechanisms (1211.3955v1)

Published 16 Nov 2012 in cs.GT and cs.LG

Abstract: Calibration is a basic property for prediction systems, and algorithms for achieving it are well-studied in both statistics and machine learning. In many applications, however, the predictions are used to make decisions that select which observations are made. This makes calibration difficult, as adjusting predictions to achieve calibration changes future data. We focus on click-through-rate (CTR) prediction for search ad auctions. Here, CTR predictions are used by an auction that determines which ads are shown, and we want to maximize the value generated by the auction. We show that certain natural notions of calibration can be impossible to achieve, depending on the details of the auction. We also show that it can be impossible to maximize auction efficiency while using calibrated predictions. Finally, we give conditions under which calibration is achievable and simultaneously maximizes auction efficiency: roughly speaking, bids and queries must not contain information about CTRs that is not already captured by the predictions.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube