Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 156 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Data-Efficient Quickest Change Detection in Minimax Settings (1211.3729v1)

Published 15 Nov 2012 in math.ST, cs.IT, math.IT, math.OC, math.PR, and stat.TH

Abstract: The classical problem of quickest change detection is studied with an additional constraint on the cost of observations used in the detection process. The change point is modeled as an unknown constant, and minimax formulations are proposed for the problem. The objective in these formulations is to find a stopping time and an on-off observation control policy for the observation sequence, to minimize a version of the worst possible average delay, subject to constraints on the false alarm rate and the fraction of time observations are taken before change. An algorithm called DE-CuSum is proposed and is shown to be asymptotically optimal for the proposed formulations, as the false alarm rate goes to zero. Numerical results are used to show that the DE-CuSum algorithm has good trade-off curves and performs significantly better than the approach of fractional sampling, in which the observations are skipped using the outcome of a sequence of coin tosses, independent of the observation process. This work is guided by the insights gained from an earlier study of a Bayesian version of this problem.

Citations (54)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.