Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Maximizing System Throughput Using Cooperative Sensing in Multi-Channel Cognitive Radio Networks (1211.3666v1)

Published 15 Nov 2012 in cs.NI

Abstract: In Cognitive Radio Networks (CRNs), unlicensed users are allowed to access the licensed spectrum when it is not currently being used by primary users (PUs). In this paper, we study the throughput maximization problem for a multi-channel CRN where each SU can only sense a limited number of channels. We show that this problem is strongly NP-hard, and propose an approximation algorithm with a factor at least $1/2\mu$ where $\mu \in [1,2]$ is a system parameter reflecting the sensing capability of SUs across channels and their sensing budgets. This performance guarantee is achieved by exploiting a nice structural property of the objective function and constructing a particular matching. Our numerical results demonstrate the advantage of our algorithm compared with both a random and a greedy sensing assignment algorithm.

Citations (8)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.