Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 172 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 81 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Maximizing System Throughput Using Cooperative Sensing in Multi-Channel Cognitive Radio Networks (1211.3666v1)

Published 15 Nov 2012 in cs.NI

Abstract: In Cognitive Radio Networks (CRNs), unlicensed users are allowed to access the licensed spectrum when it is not currently being used by primary users (PUs). In this paper, we study the throughput maximization problem for a multi-channel CRN where each SU can only sense a limited number of channels. We show that this problem is strongly NP-hard, and propose an approximation algorithm with a factor at least $1/2\mu$ where $\mu \in [1,2]$ is a system parameter reflecting the sensing capability of SUs across channels and their sensing budgets. This performance guarantee is achieved by exploiting a nice structural property of the objective function and constructing a particular matching. Our numerical results demonstrate the advantage of our algorithm compared with both a random and a greedy sensing assignment algorithm.

Citations (8)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.