Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 172 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 94 tok/s Pro
Kimi K2 194 tok/s Pro
GPT OSS 120B 451 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Recovering the Optimal Solution by Dual Random Projection (1211.3046v4)

Published 13 Nov 2012 in cs.LG

Abstract: Random projection has been widely used in data classification. It maps high-dimensional data into a low-dimensional subspace in order to reduce the computational cost in solving the related optimization problem. While previous studies are focused on analyzing the classification performance of using random projection, in this work, we consider the recovery problem, i.e., how to accurately recover the optimal solution to the original optimization problem in the high-dimensional space based on the solution learned from the subspace spanned by random projections. We present a simple algorithm, termed Dual Random Projection, that uses the dual solution of the low-dimensional optimization problem to recover the optimal solution to the original problem. Our theoretical analysis shows that with a high probability, the proposed algorithm is able to accurately recover the optimal solution to the original problem, provided that the data matrix is of low rank or can be well approximated by a low rank matrix.

Citations (73)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube