Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 64 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Minimal cost feature selection of data with normal distribution measurement errors (1211.2512v2)

Published 12 Nov 2012 in cs.AI and cs.LG

Abstract: Minimal cost feature selection is devoted to obtain a trade-off between test costs and misclassification costs. This issue has been addressed recently on nominal data. In this paper, we consider numerical data with measurement errors and study minimal cost feature selection in this model. First, we build a data model with normal distribution measurement errors. Second, the neighborhood of each data item is constructed through the confidence interval. Comparing with discretized intervals, neighborhoods are more reasonable to maintain the information of data. Third, we define a new minimal total cost feature selection problem through considering the trade-off between test costs and misclassification costs. Fourth, we proposed a backtracking algorithm with three effective pruning techniques to deal with this problem. The algorithm is tested on four UCI data sets. Experimental results indicate that the pruning techniques are effective, and the algorithm is efficient for data sets with nearly one thousand objects.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.