Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 159 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 193 tok/s Pro
GPT OSS 120B 352 tok/s Pro
Claude Sonnet 4.5 33 tok/s Pro
2000 character limit reached

New constructions of RIP matrices with fast multiplication and fewer rows (1211.0986v1)

Published 5 Nov 2012 in cs.DS, cs.IT, math.IT, and math.PR

Abstract: In compressed sensing, the "restricted isometry property" (RIP) is a sufficient condition for the efficient reconstruction of a nearly k-sparse vector x in Cd from m linear measurements Phi x. It is desirable for m to be small, and for Phi to support fast matrix-vector multiplication. In this work, we give a randomized construction of RIP matrices Phi in C{m x d}, preserving the L_2 norms of all k-sparse vectors with distortion 1+eps, where the matrix-vector multiply Phi x can be computed in nearly linear time. The number of rows m is on the order of eps{-2}klog dlog2(klog d). Previous analyses of constructions of RIP matrices supporting fast matrix-vector multiplies, such as the sampled discrete Fourier matrix, required m to be larger by roughly a log k factor. Supporting fast matrix-vector multiplication is useful for iterative recovery algorithms which repeatedly multiply by Phi or Phi*. Furthermore, our construction, together with a connection between RIP matrices and the Johnson-Lindenstrauss lemma in [Krahmer-Ward, SIAM. J. Math. Anal. 2011], implies fast Johnson-Lindenstrauss embeddings with asymptotically fewer rows than previously known. Our approach is a simple twist on previous constructions. Rather than choosing the rows for the embedding matrix to be rows sampled from some larger structured matrix (such as the discrete Fourier transform or a random circulant matrix), we instead choose each row of the embedding matrix to be a linear combination of a small number of rows of the original matrix, with random sign flips as coefficients. The main tool in our analysis is a recent bound for the supremum of certain types of Rademacher chaos processes in [Krahmer-Mendelson-Rauhut, arXiv:1207.0235].

Citations (46)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.