Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

High-Dimensional Covariance Decomposition into Sparse Markov and Independence Models (1211.0919v2)

Published 5 Nov 2012 in stat.ML, math.ST, and stat.TH

Abstract: Fitting high-dimensional data involves a delicate tradeoff between faithful representation and the use of sparse models. Too often, sparsity assumptions on the fitted model are too restrictive to provide a faithful representation of the observed data. In this paper, we present a novel framework incorporating sparsity in different domains.We decompose the observed covariance matrix into a sparse Gaussian Markov model (with a sparse precision matrix) and a sparse independence model (with a sparse covariance matrix). Our framework incorporates sparse covariance and sparse precision estimation as special cases and thus introduces a richer class of high-dimensional models. We characterize sufficient conditions for identifiability of the two models, \viz Markov and independence models. We propose an efficient decomposition method based on a modification of the popular $\ell_1$-penalized maximum-likelihood estimator ($\ell_1$-MLE). We establish that our estimator is consistent in both the domains, i.e., it successfully recovers the supports of both Markov and independence models, when the number of samples $n$ scales as $n = \Omega(d2 \log p)$, where $p$ is the number of variables and $d$ is the maximum node degree in the Markov model. Our experiments validate these results and also demonstrate that our models have better inference accuracy under simple algorithms such as loopy belief propagation.

Citations (12)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.