Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 163 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 42 tok/s Pro
GPT-5 High 41 tok/s Pro
GPT-4o 94 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Differential Privacy for the Analyst via Private Equilibrium Computation (1211.0877v2)

Published 5 Nov 2012 in cs.DS and cs.GT

Abstract: We give new mechanisms for answering exponentially many queries from multiple analysts on a private database, while protecting differential privacy both for the individuals in the database and for the analysts. That is, our mechanism's answer to each query is nearly insensitive to changes in the queries asked by other analysts. Our mechanism is the first to offer differential privacy on the joint distribution over analysts' answers, providing privacy for data analysts even if the other data analysts collude or register multiple accounts. In some settings, we are able to achieve nearly optimal error rates (even compared to mechanisms which do not offer analyst privacy), and we are able to extend our techniques to handle non-linear queries. Our analysis is based on a novel view of the private query-release problem as a two-player zero-sum game, which may be of independent interest.

Citations (38)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.