Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 28 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 16 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 471 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Improved Time Complexity of Bandwidth Approximation in Dense Graphs (1211.0177v1)

Published 1 Nov 2012 in cs.DS and math.CO

Abstract: Given a graph $G=(V, E)$ and and a proper labeling $f$ from $V$ to ${1, ..., n}$, we define $B(f)$ as the maximum absolute difference between $f(u)$ and $f(v)$ where $(u,v)\in E$. The bandwidth of $G$ is the minimum $B(f)$ for all $f$. Say $G$ is $\delta$-dense if its minimum degree is $\delta n$. In this paper, we investigate the trade-off between the approximation ratio and the time complexity of the classical approach of Karpinski {et al}.\cite{Karpin97}, and present a faster randomized algorithm for approximating the bandwidth of $\delta$-dense graphs. In particular, by removing the polylog factor of the time complexity required to enumerate all possible placements for balls to bins, we reduce the time complexity from $O(n6\cdot (\log n){O(1)})$ to $O(n{4+o(1)})$. In advance, we reformulate the perfect matching phase of the algorithm with a maximum flow problem of smaller size and reduce the time complexity to $O(n2\log\log n)$. We also extend the graph classes could be applied by the original approach: we show that the algorithm remains polynomial time as long as $\delta$ is $O({(\log\log n)}2 / {\log n})$.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)