Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 56 tok/s
Gemini 2.5 Pro 39 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 155 tok/s Pro
GPT OSS 120B 476 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

On the Power of Conditional Samples in Distribution Testing (1210.8338v3)

Published 31 Oct 2012 in cs.DS, cs.CC, math.PR, math.ST, and stat.TH

Abstract: In this paper we define and examine the power of the {\em conditional-sampling} oracle in the context of distribution-property testing. The conditional-sampling oracle for a discrete distribution $\mu$ takes as input a subset $S \subset [n]$ of the domain, and outputs a random sample $i \in S$ drawn according to $\mu$, conditioned on $S$ (and independently of all prior samples). The conditional-sampling oracle is a natural generalization of the ordinary sampling oracle in which $S$ always equals $[n]$. We show that with the conditional-sampling oracle, testing uniformity, testing identity to a known distribution, and testing any label-invariant property of distributions is easier than with the ordinary sampling oracle. On the other hand, we also show that for some distribution properties the sample-complexity remains near-maximal even with conditional sampling.

Citations (64)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.