Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 57 tok/s Pro
Kimi K2 190 tok/s Pro
GPT OSS 120B 435 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Towards Swarm Calculus: Urn Models of Collective Decisions and Universal Properties of Swarm Performance (1210.6539v3)

Published 24 Oct 2012 in cs.NE and cs.AI

Abstract: Methods of general applicability are searched for in swarm intelligence with the aim of gaining new insights about natural swarms and to develop design methodologies for artificial swarms. An ideal solution could be a `swarm calculus' that allows to calculate key features of swarms such as expected swarm performance and robustness based on only a few parameters. To work towards this ideal, one needs to find methods and models with high degrees of generality. In this paper, we report two models that might be examples of exceptional generality. First, an abstract model is presented that describes swarm performance depending on swarm density based on the dichotomy between cooperation and interference. Typical swarm experiments are given as examples to show how the model fits to several different results. Second, we give an abstract model of collective decision making that is inspired by urn models. The effects of positive feedback probability, that is increasing over time in a decision making system, are understood by the help of a parameter that controls the feedback based on the swarm's current consensus. Several applicable methods, such as the description as Markov process, calculation of splitting probabilities, mean first passage times, and measurements of positive feedback, are discussed and applications to artificial and natural swarms are reported.

Citations (59)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube