Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 158 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 106 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Online Recovery Guarantees and Analytical Results for OMP (1210.5991v2)

Published 22 Oct 2012 in cs.IT and math.IT

Abstract: Orthogonal Matching Pursuit (OMP) is a simple, yet empirically competitive algorithm for sparse recovery. Recent developments have shown that OMP guarantees exact recovery of K-sparse signals with K or more than K iterations if the observation matrix satisfies the restricted isometry property (RIP) with some conditions. We develop RIP-based online guarantees for recovery of a K-sparse signal with more than K OMP iterations. Though these guarantees cannot be generalized to all sparse signals a priori, we show that they can still hold online when the state-of-the-art K-step recovery guarantees fail. In addition, we present bounds on the number of correct and false indices in the support estimate for the derived condition to be less restrictive than the K-step guarantees. Under these bounds, this condition guarantees exact recovery of a K-sparse signal within 3K/2 iterations, which is much less than the number of steps required for the state-of-the-art exact recovery guarantees with more than K steps. Moreover, we present phase transitions of OMP in comparison to basis pursuit and subspace pursuit, which are obtained after extensive recovery simulations involving different sparse signal types. Finally, we empirically analyse the number of false indices in the support estimate, which indicates that these do not violate the developed upper bound in practice.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.