Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 150 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 105 tok/s Pro
Kimi K2 185 tok/s Pro
GPT OSS 120B 437 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Coordinated Multicast Beamforming in Multicell Networks (1210.5813v1)

Published 22 Oct 2012 in cs.IT and math.IT

Abstract: We study physical layer multicasting in multicell networks where each base station, equipped with multiple antennas, transmits a common message using a single beamformer to multiple users in the same cell. We investigate two coordinated beamforming designs: the quality-of-service (QoS) beamforming and the max-min SINR (signal-to-interference-plus-noise ratio) beamforming. The goal of the QoS beamforming is to minimize the total power consumption while guaranteeing that received SINR at each user is above a predetermined threshold. We present a necessary condition for the optimization problem to be feasible. Then, based on the decomposition theory, we propose a novel decentralized algorithm to implement the coordinated beamforming with limited information sharing among different base stations. The algorithm is guaranteed to converge and in most cases it converges to the optimal solution. The max-min SINR (MMS) beamforming is to maximize the minimum received SINR among all users under per-base station power constraints. We show that the MMS problem and a weighted peak-power minimization (WPPM) problem are inverse problems. Based on this inversion relationship, we then propose an efficient algorithm to solve the MMS problem in an approximate manner. Simulation results demonstrate significant advantages of the proposed multicast beamforming algorithms over conventional multicasting schemes.

Citations (147)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.