Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Approximation algorithms for energy, reliability and makespan optimization problems (1210.4673v1)

Published 17 Oct 2012 in cs.DS

Abstract: In this paper, we consider the problem of scheduling an application on a parallel computational platform. The application is a particular task graph, either a linear chain of tasks, or a set of independent tasks. The platform is made of identical processors, whose speed can be dynamically modified. It is also subject to failures: if a processor is slowed down to decrease the energy consumption, it has a higher chance to fail. Therefore, the scheduling problem requires to re-execute or replicate tasks (i.e., execute twice a same task, either on the same processor, or on two distinct processors), in order to increase the reliability. It is a tri-criteria problem: the goal is to minimize the energy consumption, while enforcing a bound on the total execution time (the makespan), and a constraint on the reliability of each task. Our main contribution is to propose approximation algorithms for these particular classes of task graphs. For linear chains, we design a fully polynomial time approximation scheme. However, we show that there exists no constant factor approximation algorithm for independent tasks, unless P=NP, and we are able in this case to propose an approximation algorithm with a relaxation on the makespan constraint.

Citations (114)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.