Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Fisher information distance: a geometrical reading (1210.2354v3)

Published 8 Oct 2012 in stat.ME, cs.IT, math-ph, math.IT, and math.MP

Abstract: This paper is a strongly geometrical approach to the Fisher distance, which is a measure of dissimilarity between two probability distribution functions. The Fisher distance, as well as other divergence measures, are also used in many applications to establish a proper data average. The main purpose is to widen the range of possible interpretations and relations of the Fisher distance and its associated geometry for the prospective applications. It focuses on statistical models of the normal probability distribution functions and takes advantage of the connection with the classical hyperbolic geometry to derive closed forms for the Fisher distance in several cases. Connections with the well-known Kullback-Leibler divergence measure are also devised.

Citations (132)

Summary

We haven't generated a summary for this paper yet.