Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 435 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Community Structure Detection in Complex Networks with Partial Background Information (1210.2018v2)

Published 7 Oct 2012 in cs.SI and physics.soc-ph

Abstract: Constrained clustering has been well-studied in the unsupervised learning society. However, how to encode constraints into community structure detection, within complex networks, remains a challenging problem. In this paper, we propose a semi-supervised learning framework for community structure detection. This framework implicitly encodes the must-link and cannot-link constraints by modifying the adjacency matrix of network, which can also be regarded as de-noising the consensus matrix of community structures. Our proposed method gives consideration to both the topology and the functions (background information) of complex network, which enhances the interpretability of the results. The comparisons performed on both the synthetic benchmarks and the real-world networks show that the proposed framework can significantly improve the community detection performance with few constraints, which makes it an attractive methodology in the analysis of complex networks.

Citations (23)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.