Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 91 tok/s
Gemini 2.5 Pro 56 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 214 tok/s Pro
GPT OSS 120B 470 tok/s Pro
Claude Sonnet 4 40 tok/s Pro
2000 character limit reached

The Correct Exponent for the Gotsman-Linial Conjecture (1210.1283v1)

Published 4 Oct 2012 in math.CO, cs.CC, and math.PR

Abstract: We prove a new bound on the average sensitivity of polynomial threshold functions. In particular we show that a polynomial threshold function of degree $d$ in at most $n$ variables has average sensitivity at most $\sqrt{n}(\log(n)){O(d\log(d))}2{O(d2\log(d)}$. For fixed $d$ the exponent in terms of $n$ in this bound is known to be optimal. This bound makes significant progress towards the Gotsman-Linial Conjecture which would put the correct bound at $\Theta(d\sqrt{n})$.

Citations (37)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)