Papers
Topics
Authors
Recent
2000 character limit reached

The Correct Exponent for the Gotsman-Linial Conjecture (1210.1283v1)

Published 4 Oct 2012 in math.CO, cs.CC, and math.PR

Abstract: We prove a new bound on the average sensitivity of polynomial threshold functions. In particular we show that a polynomial threshold function of degree $d$ in at most $n$ variables has average sensitivity at most $\sqrt{n}(\log(n)){O(d\log(d))}2{O(d2\log(d)}$. For fixed $d$ the exponent in terms of $n$ in this bound is known to be optimal. This bound makes significant progress towards the Gotsman-Linial Conjecture which would put the correct bound at $\Theta(d\sqrt{n})$.

Citations (37)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.