Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 144 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 200 tok/s Pro
GPT OSS 120B 432 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Performance Constraint and Power-Aware Allocation For User Requests In Virtual Computing Lab (1210.1026v2)

Published 3 Oct 2012 in cs.DC

Abstract: Cloud computing is driven by economies of scale. A cloud system uses virtualization technology to provide cloud resources (e.g. CPU, memory) to users in form of virtual machines. Virtual machine (VM), which is a sandbox for user application, fits well in the education environment to provide computational resources for teaching and research needs. In resource management, they want to reduce costs in operations by reducing expensive cost of electronic bill of large-scale data center system. A lease-based model is suitable for our Virtual Computing Lab, in which users ask resources on a lease of virtual machines. This paper proposes two host selection policies, named MAP (minimum of active physical hosts) and MAP-H2L, and four algorithms solving the lease scheduling problem. FF-MAP, FF-MAP-H2L algorithms meet a trade-off between the energy consumption and Quality of Service (e.g. performance). The simulation on 7-day workload, which converted from LLNL Atlas log, showed the FF-MAP and FF-MAP-H2L algorithms reducing 7.24% and 7.42% energy consumption than existing greedy mapping algorithm in the leasing scheduler Haizea. In addition, we introduce a ratio \theta of consolidation in HalfPI-FF-MAP and PI-FF-MAP algorithms, in which \theta is \pi/2 and \pi, and results on their simulations show that energy consumption decreased by 34.87% and 63.12% respectively.

Citations (12)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.