Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 126 tok/s
Gemini 2.5 Pro 45 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 127 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 425 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Robust PCA and subspace tracking from incomplete observations using L0-surrogates (1210.0805v2)

Published 2 Oct 2012 in stat.ML

Abstract: Many applications in data analysis rely on the decomposition of a data matrix into a low-rank and a sparse component. Existing methods that tackle this task use the nuclear norm and L1-cost functions as convex relaxations of the rank constraint and the sparsity measure, respectively, or employ thresholding techniques. We propose a method that allows for reconstructing and tracking a subspace of upper-bounded dimension from incomplete and corrupted observations. It does not require any a priori information about the number of outliers. The core of our algorithm is an intrinsic Conjugate Gradient method on the set of orthogonal projection matrices, the so-called Grassmannian. Non-convex sparsity measures are used for outlier detection, which leads to improved performance in terms of robustly recovering and tracking the low-rank matrix. In particular, our approach can cope with more outliers and with an underlying matrix of higher rank than other state-of-the-art methods.

Citations (40)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.