Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 164 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 40 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 102 tok/s Pro
Kimi K2 216 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Iterative Reweighted Minimization Methods for $l_p$ Regularized Unconstrained Nonlinear Programming (1210.0066v1)

Published 29 Sep 2012 in math.OC, cs.LG, stat.CO, and stat.ML

Abstract: In this paper we study general $l_p$ regularized unconstrained minimization problems. In particular, we derive lower bounds for nonzero entries of first- and second-order stationary points, and hence also of local minimizers of the $l_p$ minimization problems. We extend some existing iterative reweighted $l_1$ (IRL1) and $l_2$ (IRL2) minimization methods to solve these problems and proposed new variants for them in which each subproblem has a closed form solution. Also, we provide a unified convergence analysis for these methods. In addition, we propose a novel Lipschitz continuous $\epsilon$-approximation to $|x|p_p$. Using this result, we develop new IRL1 methods for the $l_p$ minimization problems and showed that any accumulation point of the sequence generated by these methods is a first-order stationary point, provided that the approximation parameter $\epsilon$ is below a computable threshold value. This is a remarkable result since all existing iterative reweighted minimization methods require that $\epsilon$ be dynamically updated and approach zero. Our computational results demonstrate that the new IRL1 method is generally more stable than the existing IRL1 methods [21,18] in terms of objective function value and CPU time.

Citations (148)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.