Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 30 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Granular association rule mining through parametric rough sets for cold start recommendation (1210.0065v2)

Published 29 Sep 2012 in cs.DB and cs.IR

Abstract: Granular association rules reveal patterns hide in many-to-many relationships which are common in relational databases. In recommender systems, these rules are appropriate for cold start recommendation, where a customer or a product has just entered the system. An example of such rules might be "40% men like at least 30% kinds of alcohol; 45% customers are men and 6% products are alcohol." Mining such rules is a challenging problem due to pattern explosion. In this paper, we propose a new type of parametric rough sets on two universes to study this problem. The model is deliberately defined such that the parameter corresponds to one threshold of rules. With the lower approximation operator in the new parametric rough sets, a backward algorithm is designed for the rule mining problem. Experiments on two real world data sets show that the new algorithm is significantly faster than the existing sandwich algorithm. This study indicates a new application area, namely recommender systems, of relational data mining, granular computing and rough sets.

Citations (7)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (2)

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube