Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 158 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 112 tok/s Pro
Kimi K2 177 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Measuring node spreading power by expected cluster degree (1209.6600v1)

Published 26 Sep 2012 in cs.SI and physics.soc-ph

Abstract: Traditional metrics of node influence such as degree or betweenness identify highly influential nodes, but are rarely usefully accurate in quantifying the spreading power of nodes which are not. Such nodes are the vast majority of the network, and the most likely entry points for novel influences, be they pandemic disease or new ideas. Several recent works have suggested metrics based on path counting. The current work proposes instead using the expected number of infected-susceptible edges, and shows that this measure predicts spreading power in discrete time, continuous time, and competitive spreading processes simulated on large random networks and on real world networks. Applied to the Ugandan road network, it predicts that Ebola is unlikely to pose a pandemic threat.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.