Papers
Topics
Authors
Recent
2000 character limit reached

An Efficient Algorithm for Mining Multilevel Association Rule Based on Pincer Search (1209.6297v1)

Published 27 Sep 2012 in cs.DB

Abstract: Discovering frequent itemset is a key difficulty in significant data mining applications, such as the discovery of association rules, strong rules, episodes, and minimal keys. The problem of developing models and algorithms for multilevel association mining poses for new challenges for mathematics and computer science. In this paper, we present a model of mining multilevel association rules which satisfies the different minimum support at each level, we have employed princer search concepts, multilevel taxonomy and different minimum supports to find multilevel association rules in a given transaction data set. This search is used only for maintaining and updating a new data structure. It is used to prune early candidates that would normally encounter in the top-down search. A main characteristic of the algorithms is that it does not require explicit examination of every frequent itemsets, an example is also given to demonstrate and support that the proposed mining algorithm can derive the multiple-level association rules under different supports in a simple and effective manner

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.