Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An Efficient Algorithm for Mining Multilevel Association Rule Based on Pincer Search (1209.6297v1)

Published 27 Sep 2012 in cs.DB

Abstract: Discovering frequent itemset is a key difficulty in significant data mining applications, such as the discovery of association rules, strong rules, episodes, and minimal keys. The problem of developing models and algorithms for multilevel association mining poses for new challenges for mathematics and computer science. In this paper, we present a model of mining multilevel association rules which satisfies the different minimum support at each level, we have employed princer search concepts, multilevel taxonomy and different minimum supports to find multilevel association rules in a given transaction data set. This search is used only for maintaining and updating a new data structure. It is used to prune early candidates that would normally encounter in the top-down search. A main characteristic of the algorithms is that it does not require explicit examination of every frequent itemsets, an example is also given to demonstrate and support that the proposed mining algorithm can derive the multiple-level association rules under different supports in a simple and effective manner

Citations (3)

Summary

We haven't generated a summary for this paper yet.