Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 33 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

An Evolving model of online bipartite networks (1209.6217v4)

Published 27 Sep 2012 in physics.soc-ph and cs.SI

Abstract: Understanding the structure and evolution of online bipartite networks is a significant task since they play a crucial role in various e-commerce services nowadays. Recently, various attempts have been tried to propose different models, resulting in either power-law or exponential degree distributions.However, many empirical results show that the user degree distribution actually follows a shifted power-law distribution, so-called \emph{Mandelbrot law}, which cannot be fully described by previous models. In this paper, we propose an evolving model, considering two different user behaviors: random and preferential attachment. Extensive empirical results on two real bipartite networks, \emph{Delicious} and \emph{CiteULike}, show that the theoretical model can well characterize the structure of real networks for both user and object degree distributions. In addition, we introduce a structural parameter $p$, to demonstrate that the hybrid user behavior leads to the shifted power-law degree distribution, and the region of power-law tail will increase with the increment of $p$. The proposed model might shed some lights in understanding the underlying laws governing the structure of real online bipartite networks.

Citations (22)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.