Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An Evolving model of online bipartite networks (1209.6217v4)

Published 27 Sep 2012 in physics.soc-ph and cs.SI

Abstract: Understanding the structure and evolution of online bipartite networks is a significant task since they play a crucial role in various e-commerce services nowadays. Recently, various attempts have been tried to propose different models, resulting in either power-law or exponential degree distributions.However, many empirical results show that the user degree distribution actually follows a shifted power-law distribution, so-called \emph{Mandelbrot law}, which cannot be fully described by previous models. In this paper, we propose an evolving model, considering two different user behaviors: random and preferential attachment. Extensive empirical results on two real bipartite networks, \emph{Delicious} and \emph{CiteULike}, show that the theoretical model can well characterize the structure of real networks for both user and object degree distributions. In addition, we introduce a structural parameter $p$, to demonstrate that the hybrid user behavior leads to the shifted power-law degree distribution, and the region of power-law tail will increase with the increment of $p$. The proposed model might shed some lights in understanding the underlying laws governing the structure of real online bipartite networks.

Citations (22)

Summary

We haven't generated a summary for this paper yet.