Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 136 tok/s
Gemini 2.5 Pro 45 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 88 tok/s Pro
Kimi K2 189 tok/s Pro
GPT OSS 120B 427 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

First-principles multiway spectral partitioning of graphs (1209.5969v2)

Published 26 Sep 2012 in cs.DS and cs.SI

Abstract: We consider the minimum-cut partitioning of a graph into more than two parts using spectral methods. While there exist well-established spectral algorithms for this problem that give good results, they have traditionally not been well motivated. Rather than being derived from first principles by minimizing graph cuts, they are typically presented without direct derivation and then proved after the fact to work. In this paper, we take a contrasting approach in which we start with a matrix formulation of the minimum cut problem and then show, via a relaxed optimization, how it can be mapped onto a spectral embedding defined by the leading eigenvectors of the graph Laplacian. The end result is an algorithm that is similar in spirit to, but different in detail from, previous spectral partitioning approaches. In tests of the algorithm we find that it outperforms previous approaches on certain particularly difficult partitioning problems.

Citations (36)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.