Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Approximating the Expected Values for Combinatorial Optimization Problems over Stochastic Points (1209.5828v4)

Published 26 Sep 2012 in cs.DS

Abstract: We consider the stochastic geometry model where the location of each node is a random point in a given metric space, or the existence of each node is uncertain. We study the problems of computing the expected lengths of several combinatorial or geometric optimization problems over stochastic points, including closest pair, minimum spanning tree, $k$-clustering, minimum perfect matching, and minimum cycle cover. We also consider the problem of estimating the probability that the length of closest pair, or the diameter, is at most, or at least, a given threshold. Most of the above problems are known to be $\sharpP$-hard. We obtain FPRAS (Fully Polynomial Randomized Approximation Scheme) for most of them in both the existential and locational uncertainty models. Our result for stochastic minimum spanning trees in the locational uncertain model improves upon the previously known constant factor approximation algorithm. Our results for other problems are the first known to the best of our knowledge.

Citations (6)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (2)