Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 464 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

The Parameterized Complexity of Domination-type Problems and Application to Linear Codes (1209.5267v2)

Published 24 Sep 2012 in cs.CC

Abstract: We study the parameterized complexity of domination-type problems. (sigma,rho)-domination is a general and unifying framework introduced by Telle: a set D of vertices of a graph G is (sigma,rho)-dominating if for any v in D, |N(v)\cap D| in sigma and for any $v\notin D, |N(v)\cap D| in rho. We mainly show that for any sigma and rho the problem of (sigma,rho)-domination is W[2] when parameterized by the size of the dominating set. This general statement is optimal in the sense that several particular instances of (sigma,rho)-domination are W[2]-complete (e.g. Dominating Set). We also prove that (sigma,rho)-domination is W[2] for the dual parameterization, i.e. when parameterized by the size of the dominated set. We extend this result to a class of domination-type problems which do not fall into the (sigma,rho)-domination framework, including Connected Dominating Set. We also consider problems of coding theory which are related to domination-type problems with parity constraints. In particular, we prove that the problem of the minimal distance of a linear code over Fq is W[2] for both standard and dual parameterizations, and W[1]-hard for the dual parameterization. To prove W[2]-membership of the domination-type problems we extend the Turing-way to parameterized complexity by introducing a new kind of non deterministic Turing machine with the ability to perform `blind' transitions, i.e. transitions which do not depend on the content of the tapes. We prove that the corresponding problem Short Blind Multi-Tape Non-Deterministic Turing Machine is W[2]-complete. We believe that this new machine can be used to prove W[2]-membership of other problems, not necessarily related to domination

Citations (18)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.