Strategy complexity of finite-horizon Markov decision processes and simple stochastic games (1209.3617v1)
Abstract: Markov decision processes (MDPs) and simple stochastic games (SSGs) provide a rich mathematical framework to study many important problems related to probabilistic systems. MDPs and SSGs with finite-horizon objectives, where the goal is to maximize the probability to reach a target state in a given finite time, is a classical and well-studied problem. In this work we consider the strategy complexity of finite-horizon MDPs and SSGs. We show that for all $\epsilon>0$, the natural class of counter-based strategies require at most $\log \log (\frac{1}{\epsilon}) + n+1$ memory states, and memory of size $\Omega(\log \log (\frac{1}{\epsilon}) + n)$ is required. Thus our bounds are asymptotically optimal. We then study the periodic property of optimal strategies, and show a sub-exponential lower bound on the period for optimal strategies.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.