Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 27 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 70 tok/s Pro
Kimi K2 117 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4 34 tok/s Pro
2000 character limit reached

Absence of epidemic thresholds in a growing adaptive network (1209.2541v1)

Published 12 Sep 2012 in physics.soc-ph, cs.SI, and nlin.AO

Abstract: The structure of social contact networks strongly influences the dynamics of epidemic diseases. In particular the scale-free structure of real-world social networks allows unlikely diseases with low infection rates to spread and become endemic. However, in particular for potentially fatal diseases, also the impact of the disease on the social structure cannot be neglected, leading to a complex interplay. Here, we consider the growth of a network by preferential attachment from which nodes are simultaneously removed due to an SIR epidemic. We show that increased infectiousness increases the prevalence of the disease and simultaneously causes a transition from scale-free to exponential topology. Although a transition to a degree distribution with finite variance takes place, the network still exhibits no epidemic threshold in the thermodynamic limit. We illustrate these results using agent-based simulations and analytically tractable approximation schemes.

Citations (9)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.