Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 186 tok/s Pro
GPT OSS 120B 446 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Finite-Memory Strategy Synthesis for Robust Multidimensional Mean-Payoff Objectives (1209.1007v2)

Published 5 Sep 2012 in cs.LO and cs.GT

Abstract: Two-player games on graphs provide the mathematical foundation for the study of reactive systems. In the quantitative framework, an objective assigns a value to every play, and the goal of player 1 is to minimize the value of the objective. In this framework, there are two relevant synthesis problems to consider: the quantitative analysis problem is to compute the minimal (or infimum) value that player 1 can assure, and the boolean analysis problem asks whether player 1 can assure that the value of the objective is at most $\nu$ (for a given threshold $\nu$). Mean-payoff expression games are played on a multidimensional weighted graph. An atomic mean-payoff expression objective is the mean-payoff value (the long-run average weight) of a certain dimension, and the class of mean-payoff expressions is the closure of atomic mean-payoff expressions under the algebraic operations of $\MAX,\MIN$, numerical complement and $\SUM$. In this work, we study for the first time the strategy synthesis problems for games with robust quantitative objectives, namely, games with mean-payoff expression objectives. While in general, optimal strategies for these games require infinite-memory, in synthesis we are typically interested in the construction of a finite-state system. Hence, we consider games in which player 1 is restricted to finite-memory strategies, and our main contribution is as follows. We prove that for mean-payoff expressions, the quantitative analysis problem is computable, and the boolean analysis problem is inter-reducible with Hilbert's tenth problem over rationals --- a fundamental long-standing open problem in computer science and mathematics.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.