Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
43 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Improving the K-means algorithm using improved downhill simplex search (1209.0853v1)

Published 5 Sep 2012 in cs.LG

Abstract: The k-means algorithm is one of the well-known and most popular clustering algorithms. K-means seeks an optimal partition of the data by minimizing the sum of squared error with an iterative optimization procedure, which belongs to the category of hill climbing algorithms. As we know hill climbing searches are famous for converging to local optimums. Since k-means can converge to a local optimum, different initial points generally lead to different convergence cancroids, which makes it important to start with a reasonable initial partition in order to achieve high quality clustering solutions. However, in theory, there exist no efficient and universal methods for determining such initial partitions. In this paper we tried to find an optimum initial partitioning for k-means algorithm. To achieve this goal we proposed a new improved version of downhill simplex search, and then we used it in order to find an optimal result for clustering approach and then compare this algorithm with Genetic Algorithm base (GA), Genetic K-Means (GKM), Improved Genetic K-Means (IGKM) and k-means algorithms.

Citations (4)

Summary

We haven't generated a summary for this paper yet.