Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 206 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Improving the K-means algorithm using improved downhill simplex search (1209.0853v1)

Published 5 Sep 2012 in cs.LG

Abstract: The k-means algorithm is one of the well-known and most popular clustering algorithms. K-means seeks an optimal partition of the data by minimizing the sum of squared error with an iterative optimization procedure, which belongs to the category of hill climbing algorithms. As we know hill climbing searches are famous for converging to local optimums. Since k-means can converge to a local optimum, different initial points generally lead to different convergence cancroids, which makes it important to start with a reasonable initial partition in order to achieve high quality clustering solutions. However, in theory, there exist no efficient and universal methods for determining such initial partitions. In this paper we tried to find an optimum initial partitioning for k-means algorithm. To achieve this goal we proposed a new improved version of downhill simplex search, and then we used it in order to find an optimal result for clustering approach and then compare this algorithm with Genetic Algorithm base (GA), Genetic K-Means (GKM), Improved Genetic K-Means (IGKM) and k-means algorithms.

Citations (4)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.