Emergent Mind

Abstract

Under the framework of graph-based learning, the key to robust subspace clustering and subspace learning is to obtain a good similarity graph that eliminates the effects of errors and retains only connections between the data points from the same subspace (i.e., intra-subspace data points). Recent works achieve good performance by modeling errors into their objective functions to remove the errors from the inputs. However, these approaches face the limitations that the structure of errors should be known prior and a complex convex problem must be solved. In this paper, we present a novel method to eliminate the effects of the errors from the projection space (representation) rather than from the input space. We first prove that $\ell1$-, $\ell2$-, $\ell_{\infty}$-, and nuclear-norm based linear projection spaces share the property of Intra-subspace Projection Dominance (IPD), i.e., the coefficients over intra-subspace data points are larger than those over inter-subspace data points. Based on this property, we introduce a method to construct a sparse similarity graph, called L2-Graph. The subspace clustering and subspace learning algorithms are developed upon L2-Graph. Experiments show that L2-Graph algorithms outperform the state-of-the-art methods for feature extraction, image clustering, and motion segmentation in terms of accuracy, robustness, and time efficiency.

We're not able to analyze this paper right now due to high demand.

Please check back later (sorry!).

Generate a summary of this paper on our Pro plan:

We ran into a problem analyzing this paper.

Newsletter

Get summaries of trending comp sci papers delivered straight to your inbox:

Unsubscribe anytime.