Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 143 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 117 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 436 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Efficiently Extracting Randomness from Imperfect Stochastic Processes (1209.0734v1)

Published 4 Sep 2012 in cs.IT, cs.CR, math.IT, and math.PR

Abstract: We study the problem of extracting a prescribed number of random bits by reading the smallest possible number of symbols from non-ideal stochastic processes. The related interval algorithm proposed by Han and Hoshi has asymptotically optimal performance; however, it assumes that the distribution of the input stochastic process is known. The motivation for our work is the fact that, in practice, sources of randomness have inherent correlations and are affected by measurement's noise. Namely, it is hard to obtain an accurate estimation of the distribution. This challenge was addressed by the concepts of seeded and seedless extractors that can handle general random sources with unknown distributions. However, known seeded and seedless extractors provide extraction efficiencies that are substantially smaller than Shannon's entropy limit. Our main contribution is the design of extractors that have a variable input-length and a fixed output length, are efficient in the consumption of symbols from the source, are capable of generating random bits from general stochastic processes and approach the information theoretic upper bound on efficiency.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.