Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 167 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 79 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 430 tok/s Pro
Claude Sonnet 4.5 33 tok/s Pro
2000 character limit reached

Exploiting Image Local And Nonlocal Consistency For Mixed Gaussian-Impulse Noise Removal (1208.3718v1)

Published 18 Aug 2012 in cs.MM

Abstract: Most existing image denoising algorithms can only deal with a single type of noise, which violates the fact that the noisy observed images in practice are often suffered from more than one type of noise during the process of acquisition and transmission. In this paper, we propose a new variational algorithm for mixed Gaussian-impulse noise removal by exploiting image local consistency and nonlocal consistency simultaneously. Specifically, the local consistency is measured by a hyper-Laplace prior, enforcing the local smoothness of images, while the nonlocal consistency is measured by three-dimensional sparsity of similar blocks, enforcing the nonlocal self-similarity of natural images. Moreover, a Split-Bregman based technique is developed to solve the above optimization problem efficiently. Extensive experiments for mixed Gaussian plus impulse noise show that significant performance improvements over the current state-of-the-art schemes have been achieved, which substantiates the effectiveness of the proposed algorithm.

Citations (23)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube