Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 165 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 432 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Efficient Algorithm for Extremely Large Multi-task Regression with Massive Structured Sparsity (1208.3014v1)

Published 15 Aug 2012 in stat.ML and q-bio.QM

Abstract: We develop a highly scalable optimization method called "hierarchical group-thresholding" for solving a multi-task regression model with complex structured sparsity constraints on both input and output spaces. Despite the recent emergence of several efficient optimization algorithms for tackling complex sparsity-inducing regularizers, true scalability in practical high-dimensional problems where a huge amount (e.g., millions) of sparsity patterns need to be enforced remains an open challenge, because all existing algorithms must deal with ALL such patterns exhaustively in every iteration, which is computationally prohibitive. Our proposed algorithm addresses the scalability problem by screening out multiple groups of coefficients simultaneously and systematically. We employ a hierarchical tree representation of group constraints to accelerate the process of removing irrelevant constraints by taking advantage of the inclusion relationships between group sparsities, thereby avoiding dealing with all constraints in every optimization step, and necessitating optimization operation only on a small number of outstanding coefficients. In our experiments, we demonstrate the efficiency of our method on simulation datasets, and in an application of detecting genetic variants associated with gene expression traits.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.