Human Activity Learning using Object Affordances from RGB-D Videos (1208.0967v1)
Abstract: Human activities comprise several sub-activities performed in a sequence and involve interactions with various objects. This makes reasoning about the object affordances a central task for activity recognition. In this work, we consider the problem of jointly labeling the object affordances and human activities from RGB-D videos. We frame the problem as a Markov Random Field where the nodes represent objects and sub-activities, and the edges represent the relationships between object affordances, their relations with sub-activities, and their evolution over time. We formulate the learning problem using a structural SVM approach, where labeling over various alternate temporal segmentations are considered as latent variables. We tested our method on a dataset comprising 120 activity videos collected from four subjects, and obtained an end-to-end precision of 81.8% and recall of 80.0% for labeling the activities.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.