Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 82 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 458 tok/s Pro
Claude Sonnet 4.5 30 tok/s Pro
2000 character limit reached

A Supermodular Optimization Framework for Leader Selection under Link Noise in Linear Multi-Agent Systems (1208.0946v1)

Published 4 Aug 2012 in cs.SY and math.OC

Abstract: In many applications of multi-agent systems (MAS), a set of leader agents acts as a control input to the remaining follower agents. In this paper, we introduce an analytical approach to selecting leader agents in order to minimize the total mean-square error of the follower agent states from their desired value in steady-state in the presence of noisy communication links. We show that the problem of choosing leaders in order to minimize this error can be solved using supermodular optimization techniques, leading to efficient algorithms that are within a provable bound of the optimum. We formulate two leader selection problems within our framework, namely the problem of choosing a fixed number of leaders to minimize the error, as well as the problem of choosing the minimum number of leaders to achieve a tolerated level of error. We study both leader selection criteria for different scenarios, including MAS with static topologies, topologies experiencing random link or node failures, switching topologies, and topologies that vary arbitrarily in time due to node mobility. In addition to providing provable bounds for all these cases, simulation results demonstrate that our approach outperforms other leader selection methods, such as node degree-based and random selection methods, and provides comparable performance to current state of the art algorithms.

Citations (122)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.