Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 152 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 203 tok/s Pro
GPT OSS 120B 431 tok/s Pro
Claude Sonnet 4.5 26 tok/s Pro
2000 character limit reached

Detection of Deviations in Mobile Applications Network Behavior (1208.0564v2)

Published 27 Jul 2012 in cs.CR and cs.LG

Abstract: In this paper a novel system for detecting meaningful deviations in a mobile application's network behavior is proposed. The main goal of the proposed system is to protect mobile device users and cellular infrastructure companies from malicious applications. The new system is capable of: (1) identifying malicious attacks or masquerading applications installed on a mobile device, and (2) identifying republishing of popular applications injected with a malicious code. The detection is performed based on the application's network traffic patterns only. For each application two types of models are learned. The first model, local, represents the personal traffic pattern for each user using an application and is learned on the device. The second model, collaborative, represents traffic patterns of numerous users using an application and is learned on the system server. Machine-learning methods are used for learning and detection purposes. This paper focuses on methods utilized for local (i.e., on mobile device) learning and detection of deviations from the normal application's behavior. These methods were implemented and evaluated on Android devices. The evaluation experiments demonstrate that: (1) various applications have specific network traffic patterns and certain application categories can be distinguishable by their network patterns, (2) different levels of deviations from normal behavior can be detected accurately, and (3) local learning is feasible and has a low performance overhead on mobile devices.

Citations (16)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.