Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 56 tok/s
Gemini 2.5 Pro 39 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 155 tok/s Pro
GPT OSS 120B 476 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Signal Space CoSaMP for Sparse Recovery with Redundant Dictionaries (1208.0353v3)

Published 1 Aug 2012 in cs.IT and math.IT

Abstract: Compressive sensing (CS) has recently emerged as a powerful framework for acquiring sparse signals. The bulk of the CS literature has focused on the case where the acquired signal has a sparse or compressible representation in an orthonormal basis. In practice, however, there are many signals that cannot be sparsely represented or approximated using an orthonormal basis, but that do have sparse representations in a redundant dictionary. Standard results in CS can sometimes be extended to handle this case provided that the dictionary is sufficiently incoherent or well-conditioned, but these approaches fail to address the case of a truly redundant or overcomplete dictionary. In this paper we describe a variant of the iterative recovery algorithm CoSaMP for this more challenging setting. We utilize the D-RIP, a condition on the sensing matrix analogous to the well-known restricted isometry property. In contrast to prior work, the method and analysis are "signal-focused"; that is, they are oriented around recovering the signal rather than its dictionary coefficients. Under the assumption that we have a near-optimal scheme for projecting vectors in signal space onto the model family of candidate sparse signals, we provide provable recovery guarantees. Developing a practical algorithm that can provably compute the required near-optimal projections remains a significant open problem, but we include simulation results using various heuristics that empirically exhibit superior performance to traditional recovery algorithms.

Citations (141)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.