Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Robust Estimation of Resource Consumption for SQL Queries using Statistical Techniques (1208.0278v1)

Published 1 Aug 2012 in cs.DB

Abstract: The ability to estimate resource consumption of SQL queries is crucial for a number of tasks in a database system such as admission control, query scheduling and costing during query optimization. Recent work has explored the use of statistical techniques for resource estimation in place of the manually constructed cost models used in query optimization. Such techniques, which require as training data examples of resource usage in queries, offer the promise of superior estimation accuracy since they can account for factors such as hardware characteristics of the system or bias in cardinality estimates. However, the proposed approaches lack robustness in that they do not generalize well to queries that are different from the training examples, resulting in significant estimation errors. Our approach aims to address this problem by combining knowledge of database query processing with statistical models. We model resource-usage at the level of individual operators, with different models and features for each operator type, and explicitly model the asymptotic behavior of each operator. This results in significantly better estimation accuracy and the ability to estimate resource usage of arbitrary plans, even when they are very different from the training instances. We validate our approach using various large scale real-life and benchmark workloads on Microsoft SQL Server.

Citations (120)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.