Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 37 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 125 tok/s Pro
Kimi K2 203 tok/s Pro
GPT OSS 120B 429 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Compacting Transactional Data in Hybrid OLTP & OLAP Databases (1208.0224v1)

Published 1 Aug 2012 in cs.DB

Abstract: Growing main memory sizes have facilitated database management systems that keep the entire database in main memory. The drastic performance improvements that came along with these in-memory systems have made it possible to reunite the two areas of online transaction processing (OLTP) and online analytical processing (OLAP): An emerging class of hybrid OLTP and OLAP database systems allows to process analytical queries directly on the transactional data. By offering arbitrarily current snapshots of the transactional data for OLAP, these systems enable real-time business intelligence. Despite memory sizes of several Terabytes in a single commodity server, RAM is still a precious resource: Since free memory can be used for intermediate results in query processing, the amount of memory determines query performance to a large extent. Consequently, we propose the compaction of memory-resident databases. Compaction consists of two tasks: First, separating the mutable working set from the immutable "frozen" data. Second, compressing the immutable data and optimizing it for efficient, memory-consumption-friendly snapshotting. Our approach reorganizes and compresses transactional data online and yet hardly affects the mission-critical OLTP throughput. This is achieved by unburdening the OLTP threads from all additional processing and performing these tasks asynchronously.

Citations (67)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.