Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 39 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Measuring Similarity in Large-scale Folksonomies (1207.6037v1)

Published 25 Jul 2012 in cs.IR and cs.SI

Abstract: Social (or folksonomic) tagging has become a very popular way to describe content within Web 2.0 websites. Unlike taxonomies, which overimpose a hierarchical categorisation of content, folksonomies enable end-users to freely create and choose the categories (in this case, tags) that best describe some content. However, as tags are informally defined, continually changing, and ungoverned, social tagging has often been criticised for lowering, rather than increasing, the efficiency of searching, due to the number of synonyms, homonyms, polysemy, as well as the heterogeneity of users and the noise they introduce. To address this issue, a variety of approaches have been proposed that recommend users what tags to use, both when labelling and when looking for resources. As we illustrate in this paper, real world folksonomies are characterized by power law distributions of tags, over which commonly used similarity metrics, including the Jaccard coefficient and the cosine similarity, fail to compute. We thus propose a novel metric, specifically developed to capture similarity in large-scale folksonomies, that is based on a mutual reinforcement principle: that is, two tags are deemed similar if they have been associated to similar resources, and vice-versa two resources are deemed similar if they have been labelled by similar tags. We offer an efficient realisation of this similarity metric, and assess its quality experimentally, by comparing it against cosine similarity, on three large-scale datasets, namely Bibsonomy, MovieLens and CiteULike.

Citations (8)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.