Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 57 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 87 tok/s Pro
Kimi K2 203 tok/s Pro
GPT OSS 120B 453 tok/s Pro
Claude Sonnet 4.5 33 tok/s Pro
2000 character limit reached

Spectrum Coordination in Energy Efficient Cognitive Radio Networks (1207.5853v4)

Published 24 Jul 2012 in cs.GT, cs.IT, math.IT, and math.OC

Abstract: Device coordination in open spectrum systems is a challenging problem, particularly since users experience varying spectrum availability over time and location. In this paper, we propose a game theoretical approach that allows cognitive radio pairs, namely the primary user (PU) and the secondary user (SU), to update their transmission powers and frequencies simultaneously. Specifically, we address a Stackelberg game model in which individual users attempt to hierarchically access to the wireless spectrum while maximizing their energy efficiency. A thorough analysis of the existence, uniqueness and characterization of the Stackelberg equilibrium is conducted. In particular, we show that a spectrum coordination naturally occurs when both actors in the system decide sequentially about their powers and their transmitting carriers. As a result, spectrum sensing in such a situation turns out to be a simple detection of the presence/absence of a transmission on each sub-band. We also show that when users experience very different channel gains on their two carriers, they may choose to transmit on the same carrier at the Stackelberg equilibrium as this contributes enough energy efficiency to outweigh the interference degradation caused by the mutual transmission. Then, we provide an algorithmic analysis on how the PU and the SU can reach such a spectrum coordination using an appropriate learning process. We validate our results through extensive simulations and compare the proposed algorithm to some typical scenarios including the non-cooperative case and the throughput-based-utility systems. Typically, it is shown that the proposed Stackelberg decision approach optimizes the energy efficiency while still maximizing the throughput at the equilibrium.

Citations (18)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube