Approximating Minimum-Cost Connected T-Joins (1207.5722v1)
Abstract: We design and analyse approximation algorithms for the minimum-cost connected T-join problem: given an undirected graph G = (V;E) with nonnegative costs on the edges, and a subset of nodes T, find (if it exists) a spanning connected subgraph H of minimum cost such that every node in T has odd degree and every node not in T has even degree; H may have multiple copies of any edge of G. Two well-known special cases are the TSP (|T| = 0) and the s-t path TSP (|T| = 2). Recently, An, Kleinberg, and Shmoys [STOC 2012] improved on the long-standing 5/3-approximation guarantee for the latter problem and presented an algorithm based on LP rounding that achieves an approximation guarantee of (1+sqrt(5))/2 < 1.6181. We show that the methods of An et al. extend to the minimum-cost connected T-join problem. They presented a new proof for a 5/3-approximation guarantee for the s-t path TSP; their proof extends easily to the minimum-cost connected T-join problem. Next, we improve on the approximation guarantee of 5/3 by extending their LP-rounding algorithm to get an approximation guarantee of 13/8 = 1.625 for all |T| >= 4. Finally, we focus on the prize-collecting version of the problem, and present a primal-dual algorithm that is "Lagrangian multiplier preserving" and that achieves an approximation guarantee 3 - 2/(|T|-1) when |T| >= 4. Our primal-dual algorithm is a generalization of the known primal-dual 2-approximation for the prize-collecting s-t path TSP. Furthermore, we show that our analysis is tight by presenting instances with |T| >= 4 such that the cost of the solution found by the algorithm is exactly 3 - 2/(|T|-1) times the cost of the constructed dual solution.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.