Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 52 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

On the Conjecture on APN Functions (1207.5528v1)

Published 23 Jul 2012 in cs.IT, math.AG, math.CO, and math.IT

Abstract: An almost perfect nonlinear (APN) function (necessarily a polynomial function) on a finite field $\mathbb{F}$ is called exceptional APN, if it is also APN on infinitely many extensions of $\mathbb{F}$. In this article we consider the most studied case of $\mathbb{F}=\mathbb{F}_{2n}$. A conjecture of Janwa-Wilson and McGuire-Janwa-Wilson (1993/1996), settled in 2011, was that the only exceptional monomial APN functions are the monomials $xn$, where $n=2i+1$ or $n={2{2i}-2i+1}$ (the Gold or the Kasami exponents respectively). A subsequent conjecture states that any exceptional APN function is one of the monomials just described. One of our result is that all functions of the form $f(x)=x{2k+1}+h(x)$ (for any odd degree $h(x)$, with a mild condition in few cases), are not exceptional APN, extending substantially several recent results towards the resolution of the stated conjecture.

Citations (14)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.