Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Exploring the rationality of some syntactic merging operators (extended version) (1207.4813v1)

Published 19 Jul 2012 in cs.AI

Abstract: Most merging operators are defined by semantics methods which have very high computational complexity. In order to have operators with a lower computational complexity, some merging operators defined in a syntactical way have be proposed. In this work we define some syntactical merging operators and exploring its rationality properties. To do that we constrain the belief bases to be sets of formulas very close to logic programs and the underlying logic is defined through forward chaining rule (Modus Ponens). We propose two types of operators: arbitration operators when the inputs are only two bases and fusion with integrity constraints operators. We introduce a set of postulates inspired of postulates LS, proposed by Liberatore and Shaerf and then we analyzed the first class of operators through these postulates. We also introduce a set of postulates inspired of postulates KP, proposed by Konieczny and Pino P\'erez and then we analyzed the second class of operators through these postulates.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.