Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 167 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 429 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Finite Alphabet Iterative Decoders, Part II: Improved Guaranteed Error Correction of LDPC Codes via Iterative Decoder Diversity (1207.4807v1)

Published 19 Jul 2012 in cs.IT and math.IT

Abstract: Recently, we introduced a new class of finite alphabet iterative decoders (FAIDs) for low-density parity-check (LDPC) codes. These decoders are capable of surpassing belief propagation in the error floor region on the Binary Symmetric channel with much lower complexity. In this paper, we introduce a a novel scheme to further increase the guaranteed error correction capability from what is achievable by a FAID on column-weight-three LDPC codes. The proposed scheme uses a plurality of FAIDs which collectively correct more error patterns than a single FAID on a given code. The collection of FAIDs utilized by the scheme is judiciously chosen to ensure that individual decoders have different decoding dynamics and correct different error patterns. Consequently, they can collectively correct a diverse set of error patterns, which is referred to as decoder diversity. We provide a systematic method to generate the set of FAIDs for decoder diversity on a given code based on the knowledge of the most harmful trapping sets present in the code. Using the well-known column-weight-three $(155,64)$ Tanner code with $d_{min}$ = 20 as an example, we describe the method in detail and show that the guaranteed error correction capability can be significantly increased with decoder diversity.

Citations (39)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.