Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 39 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 229 tok/s Pro
GPT OSS 120B 428 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Finite Alphabet Iterative Decoders, Part I: Decoding Beyond Belief Propagation on BSC (1207.4800v1)

Published 19 Jul 2012 in cs.IT and math.IT

Abstract: We introduce a new paradigm for finite precision iterative decoding on low-density parity-check codes over the Binary Symmetric channel. The messages take values from a finite alphabet, and unlike traditional quantized decoders which are quantized versions of the Belief propagation (BP) decoder, the proposed finite alphabet iterative decoders (FAIDs) do not propagate quantized probabilities or log-likelihoods and the variable node update functions do not mimic the BP decoder. Rather, the update functions are maps designed using the knowledge of potentially harmful subgraphs that could be present in a given code, thereby rendering these decoders capable of outperforming the BP in the error floor region. On certain column-weight-three codes of practical interest, we show that there exist 3-bit precision FAIDs that surpass the BP decoder in the error floor. Hence, FAIDs are able to achieve a superior performance at much lower complexity. We also provide a methodology for the selection of FAIDs that is not code-specific, but gives a set of candidate FAIDs containing potentially good decoders in the error floor region for any column-weight-three code. We validate the code generality of our methodology by providing particularly good three-bit precision FAIDs for a variety of codes with different rates and lengths.

Citations (8)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube