Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 147 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 120 tok/s Pro
Kimi K2 221 tok/s Pro
GPT OSS 120B 449 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Multiscale Network Generation (1207.4266v1)

Published 18 Jul 2012 in cs.DM, cond-mat.stat-mech, cs.SI, math.CO, and physics.soc-ph

Abstract: Networks are widely used in science and technology to represent relationships between entities, such as social or ecological links between organisms, enzymatic interactions in metabolic systems, or computer infrastructure. Statistical analyses of networks can provide critical insights into the structure, function, dynamics, and evolution of those systems. However, the structures of real-world networks are often not known completely, and they may exhibit considerable variation so that no single network is sufficiently representative of a system. In such situations, researchers may turn to proxy data from related systems, sophisticated methods for network inference, or synthetic networks. Here, we introduce a flexible method for synthesizing realistic ensembles of networks starting from a known network, through a series of mappings that coarsen and later refine the network structure by randomized editing. The method, MUSKETEER, preserves structural properties with minimal bias, including unknown or unspecified features, while introducing realistic variability at multiple scales. Using examples from several domains, we show that MUSKETEER produces the intended stochasticity while achieving greater fidelity across a suite of network properties than do other commonly used network generation algorithms.

Citations (40)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.