Papers
Topics
Authors
Recent
2000 character limit reached

A Hierarchical Graphical Model for Record Linkage (1207.4180v1)

Published 12 Jul 2012 in cs.LG, cs.IR, and stat.ML

Abstract: The task of matching co-referent records is known among other names as rocord linkage. For large record-linkage problems, often there is little or no labeled data available, but unlabeled data shows a reasonable clear structure. For such problems, unsupervised or semi-supervised methods are preferable to supervised methods. In this paper, we describe a hierarchical graphical model framework for the linakge-problem in an unsupervised setting. In addition to proposing new methods, we also cast existing unsupervised probabilistic record-linkage methods in this framework. Some of the techniques we propose to minimize overfitting in the above model are of interest in the general graphical model setting. We describe a method for incorporating monotinicity constraints in a graphical model. We also outline a bootstrapping approach of using "single-field" classifiers to noisily label latent variables in a hierarchical model. Experimental results show that our proposed unsupervised methods perform quite competitively even with fully supervised record-linkage methods.

Citations (119)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.